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Abstract
We generalize the fractional variational problem by allowing the possibility
that the lower bound in the fractional derivative does not coincide with the
lower bound of the integral that is minimized. Also, for the standard case when
these two bounds coincide, we derive a new form of Euler–Lagrange equations.
We use approximations for fractional derivatives in the Lagrangian and obtain
the Euler–Lagrange equations which approximate the initial Euler–Lagrange
equations in a weak sense.

PACS numbers: 02.30.Xx, 45.10.Hj
Mathematics Subject Classification: 49K05, 26A33

1. Introduction

Fractional calculus with derivatives and integrals of any real or complex order has its origin
in the work of Euler, and even earlier in the work of Leibnitz. Shortly after being introduced,
the new theory turned out to be very attractive to many famous mathematicians and scientists
(e.g. P S Laplace, B Riemann, J Liouville, N H Abel, J B J Fourier et al) due to the numerous
possibilities for its applications. Besides mathematics, fractional derivatives and integrals
appear in physics, mechanics, engineering, elasticity, dynamics, control theory, electronics,
modelling, probability, finance, economics, biology, chemistry, etc. The fractional calculus
is nowadays covered by several extensive reference books [15, 22, 25, 28, 33] and a large
number of relevant papers.

Fractional calculus of variations unifies calculus of variations (cf classical books
[13, 14, 16, 32, 35]) and fractional calculus, by inserting fractional derivatives into variational
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integrals. This of course occurs naturally in many problems of physics or mechanics, in order
to provide more accurate models of physical phenomena. Research within this topic goes in
different directions. Jumarie [17, 18] is one of the first who has used fractional variational
calculus in the analysis of fractional Brownian motion. Especially, we refer to Jumarie’s paper
[19] for the new approach to fractional stochastic mechanics and stochastic optimal control.
We also cite Riewe [30, 31], who investigated nonconservative Lagrangian and Hamiltonian
mechanics and for those cases formulated a version of the Euler–Lagrange equations. Further
study of the fractional Euler–Lagrange equations can be found in the work of Agrawal [1–3],
who considered different types of variational problems, involving Riemann–Liouville, Caputo
and Riesz fractional derivatives, respectively. He derived corresponding Euler–Lagrange
equations and discussed possibilities for prescribing boundary conditions in each case. The
work of mentioned authors influenced many recent papers. For instance, Baleanu [7, 8] applied
the fractional Euler–Lagrange equations to examine fractional Lagrangian and Hamiltonian
systems linear in velocities. Other applications of fractional variational principles are presented
in [4–6, 9, 10, 12, 23, 24, 26, 27, 29]. We also cite here the work of Frederico and Torres [11],
who introduced a new concept of fractional conserved quantities on the basis of a variational
principle, and proved a version of the fractional Nöther theorem.

There are several aims of this paper. First, we discuss the Euler–Lagrange equations of
[1] and [2] and show that the transversality condition proposed in [2] should be used with
care, since it may lead to erroneous conclusions. Second, we consider a fractional variational
problem, defined by a functional whose lower bound does not coincide with the lower bound
in the left Riemann–Liouville fractional derivative that appears in the Lagrangian. This leads
to the natural generalization of the fractional variational problems considered so far. Third, in
section 4 we approximate fractional derivative in the Lagrangian L

(
t, u(t), aD

α
t u

)
with a finite

number of terms containing derivatives of integer order, which reduces the variational problem
to the one depending only on the classical derivatives of the function u. For that purpose we
consider approximations in a weak sense, using analytic functions as a test function space, and
show that a sequence of approximated Euler–Lagrange equations converges to the fractional
Euler–Lagrange equation.

2. Notation

Let u ∈ L1([a, b]) and 0 � α, β < 1. Then the left Riemann–Liouville fractional integral of
order α, aI

α
t u is defined as

aI
α
t u = 1

�(α)

∫ t

a

(t − θ)α−1u(θ) dθ, t ∈ [a, b].

The right Riemann–Liouville fractional integral of order β, t I
β

b u is defined as

t I
β

b u = 1

�(β)

∫ b

t

(θ − t)β−1u(θ) dθ, t ∈ [a, b].

If u is an absolutely continuous function in [a, b], i.e. u ∈ AC([a, b]), and 0 � α < 1, then
the left Riemann–Liouville fractional derivative of order α, aD

α
t u is given by

aD
α
t u = d

dt
aI

1−α
t u = 1

�(1 − α)

d

dt

∫ t

a

(t − θ)−αu(θ) dθ, t ∈ [a, b],

and for 0 � β < 1, the right Riemann–Liouville fractional derivative of order β, tD
β

b u is
given by

tD
β

b u =
(

− d

dt

)
t I

1−β

b u = 1

�(1 − β)

(
− d

dt

) ∫ b

t

(θ − t)−βu(θ) dθ, t ∈ [a, b].

2
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We have that aD
α
t aI

α
t = I , where I is the identity map. The formula for fractional integration

by parts reads (see [33, p 46])∫ b

a

f (t)aD
α
t g dt =

∫ b

a

g(t)tD
α
b f dt, f, g ∈ AC([a, b]). (1)

In the distributional setting, the Riemann–Liouville fractional derivatives can be defined
via convolutions in the space of tempered distributions supported by [0, +∞). Let (fα)α∈R ∈
S ′

+ = {f ∈ S ′(R) : suppf ⊂ [0, +∞)} be a family of distributions defined as

fα(t) =

⎧⎪⎨
⎪⎩

H(t)
tα−1

�(α)
, α > 0

f
(N)
α+N(t), N ∈ N : N + α > 0 ∧ N + α − 1 < 0,

where H is the Heaviside function. The operator fα∗ is the Riemann–Liouville operator of
differentiation, resp. integration of order α for α < 0, resp. α > 0. In this setting aI

α
t and

aD
α
t are inverses in both directions, due to the group property in S ′, that is fα ∗ fβ = fα+β ,

for all α, β ∈ R.
Beside the Riemann–Liouville approach there exist several other possibilities for

introducing derivatives of fractional order. We will make use of the Caputo fractional
derivatives: if 0 � α, β < 1 and u ∈ AC([a, b]), then the left Caputo fractional derivative of
order α, c

aD
α
t u is defined as

c
aD

α
t u = 1

�(1 − α)

∫ t

a

(t − θ)−αu̇(θ) dθ, t ∈ [a, b],

where ˙(·) denotes the total derivative d
dt

, and the right Caputo fractional derivative of order β,
c
t D

β

b u is defined as

c
t D

β

b u = − 1

�(1 − β)

∫ b

t

(θ − t)−βu̇(θ) dθ, t ∈ [a, b].

The Riemann–Liouville and Caputo fractional derivatives are related by the following formula:

aD
α
t u = c

aD
α
t u +

1

�(1 − α)

u(a)

(t − a)α
, t ∈ [a, b], (2)

and similarly

tD
β

b u = c
t D

β

b u +
1

�(1 − β)

u(b)

(b − t)α
, t ∈ [a, b]. (3)

If u(a) = 0 (resp. u(b) = 0) then the left (resp. right) Riemann–Liouville and Caputo
fractional derivatives coincide. Also, for u(a) = 0 the left Riemann–Liouville fractional
derivative commutes with the first derivative with respect to t, i.e. d

dt aD
α
t u = aD

α
t

d
dt

u (and the
same holds for the right Riemann–Liouville fractional derivative if u(b) = 0).

In this paper, we will consider the Lagrangian L as a function of t, u and aD
α
t u, i.e.

L = L
(
t, u(t), aD

α
t u

)
. The partial derivatives of L will be denoted by ∂L

∂t
, ∂L

∂u
and ∂L

∂aD
α
t u

or by
∂1L, ∂2L and ∂3L, respectively. The first (or Lagrangian) variation will be denoted by δ, as
usual.

3. Euler–Lagrange equations

Let (A,B) be a subinterval of (a, b). Consider a functional

L[u] =
∫ B

A

L
(
t, u(t), aD

α
t u

)
dt, 0 � α < 1, (4)

3
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where u is an absolutely continuous function in [a, b] and L is a function in (a, b) × R × R

such that

L ∈ C1((a, b) × R × R)

and

t �→ ∂2L
(
t, u(t), aD

α
t u

)
is integrable in (a, b) and

t �→ ∂3L
(
t, u(t), aD

α
t u

) ∈ AC[a, b], for every u ∈ AC([a, b])

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (5)

A fractional variational problem consists of finding extremal values (minima or maxima) of
the functional (4) among all admissible functions. The function L is called the Lagrangian.
Note that in (4) the constants a and A are assumed to be different and in general a � A. Their
physical meaning is also different. While the interval (A,B) defines the Hamilton action,
the value a defines memory of the system. In the special case, that was treated previously
(cf [1, 2, 7, 8, 11]), it was assumed that a = A.

As mentioned above, L is to be minimized (or maximized) over the set of admissible
functions. Hence, we have to specify where we look for a minimum of (4): the admissible
set will consist of all absolutely continuous functions u in [a, b], which pass through a fixed
point at a, i.e. u(a) = a0, for a fixed a0 ∈ R.

Remark 3.1.

(i) We consider a fractional variational problem which involves only left Riemann–Liouville
fractional derivatives. The problem can be easily generalized for Lagrangians which will
depend also on the right Riemann–Liouville fractional derivatives.

(ii) We assume that 0 � α < 1. Our assumption can be extended to the case α � 1 without
difficulties.

(iii) Traditionally, the minimizers of a variational problem are sought. Analogously, one can
consider the problem of finding the maximal values of a variational problem.

In this section, we discuss the results on the Euler–Lagrange equations of the fractional
variational problem (4).

The case A = a was treated in [1] by Agrawal. It was proved there that if one wants
to minimize (4) among all functions u which have continuous left αth Riemann–Liouville
fractional derivative and which satisfy the Dirichlet boundary conditions u(a) = a0 and
u(b) = b0, for some real constant values a0 and b0, then a minimizer should be sought among
all solutions of the Euler–Lagrange equation

∂L

∂u
+ tD

α
b

(
∂L

∂aD
α
t u

)
= 0. (6)

This result was modified in [2], where again a = A was used, and the boundary condition was
specified at t = a only, which allowed the natural boundary conditions to be developed. The
corresponding Euler–Lagrange equation was obtained as

∂L

∂u
+ c

t D
α
b

(
∂L

∂aD
α
t u

)
= 0, (7)

with the transversality (natural) condition

∂L

∂aD
α
t u

aI
1−α
t δu = 0 at t = b. (8)

It is clear that (7) and (8) imply (6). But the converse does not hold in general. This depends
on assumptions on L and the set of admissible functions. Our first example which is to follow
will show that assuming (5), condition (6) does not imply (7) and (8).

4
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Example 3.2. Consider a fractional variational problem of the form

L[u] =
∫ 1

0
L

(
t, u(t), 0D

α
t u

)
dt → min (9)

with u ∈ AC([0, 1]) and L to be specified.

(i) Let the Lagrangian L satisfies (5) and has the form

L
(
t, u, aD

α
t u

) = F(t, u) + f (t)aD
α
t u.

Then ∂L/∂aD
α
t u = f (t), t ∈ (0, 1), and we have (see [2, (13)) that

0 =
∫ 1

0

(
∂F

∂u
+ c

t D
α
1 f

)
δu dt + f (t)0D

α−1
t δu

∣∣∣1

0

=
∫ 1

0

(
∂F

∂u
+

1

�(1 − α)

∫ 1

t

f ′(θ)

(θ − t)α
dθ +

f (1)

�(1 − α)

1

(1 − t)α

)
δu dt.

Now, take for example F = u2

2�(1−α)
1

(1−t)α
and f (t) = −1, t ∈ (0, 1). Then the

Euler–Lagrange equation (6) gives

u

�(1 − α)

1

(1 − t)α
= 1

�(1 − α)

1

(1 − t)α
,

thus u ≡ 1 in [0, 1]. Hence, if one wants to formulate (9) so that (6) holds if and only
if (7) and (8) hold, then some additional assumptions on F have to be supposed. For
instance, the condition f (1) = 0 provides the desired equivalence of (6) with (7, 8).

(ii) The Lagrangian

L
(
t, u, aD

α
t u

) = (
aD

α
t u − u

)2

was investigated in detail in [2]. Solutions of the corresponding fractional variational
problem (9) can be found directly. It is clear that the functional L achieves its minimum
(which is zero) when aD

α
t u − u = 0. Hence, the problem reduces to solving the equation

aD
α
t u = u. It was shown in [22, p 222] that this equation has no solution which is

bounded at 0. In other words, one cannot solve the fractional variational problem with
the Lagrangian given above among the functions with the prescribed, finite boundary
condition at 0. If instead of the left Riemann–Liouville fractional derivative one considers
the Lagrangian L as a function of the left Caputo fractional derivative, then the equation
c
aD

α
t u = u has a solution bounded at zero, which is also a solution of the corresponding

fractional variational problem (9). In a recent paper [3], the author tried to overcome
the problem of non-solvability of the equation aD

α
t u = u by using the symmetrized

Caputo fractional derivative, called the Riesz Caputo fractional derivative and defined
as rc

a Dα
t u := 1

2

(
c
aD

α
t u − c

t D
α
b u

)
. Similar kind of fractional derivatives were used earlier

in [23, 24].

These examples suggest that the Euler–Lagrange equation for the fractional variational
problem (4) with A = a and with the boundary condition specified at t = a, should be
reformulated as follows:

∂L

∂u
+ c

t D
α
b

(
∂L

∂aD
α
t u

)
+

∂L

∂aD
α
t u

∣∣∣
t=b

1

�(1 − α)

1

(b − t)α
= 0, (10)

instead of (7) and (8).
We present now the Euler–Lagrange equation for (4). We state this as

5
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Theorem 3.3. Let u∗ ∈ AC([a, b]) be an extremal of the functionalL in (4), whose Lagrangian
L satisfies (5). Then u∗ satisfies the following Euler–Lagrange equations

∂L

∂u
+ c

t D
α
B

(
∂L

∂aD
α
t u

)
+

∂L

∂aD
α
t u

∣∣∣
t=B

1

�(1 − α)

1

(B − t)α
= 0, t ∈ (A,B) (11)

tD
α
B

(
∂L

∂aD
α
t u

)
− tD

α
A

(
∂L

∂aD
α
t u

)
= 0, t ∈ (a,A). (12)

Proof. It is known that a necessary condition for a solution u∗ of a fractional variational
problem L[u] defined by (4) is that the first variation of L[u] is zero at the solution u∗, i.e.

0 = δL[u]

=
∫ B

A

δL
(
t, u(t), aD

α
t u

)
dt

=
∫ B

A

d

dε

∣∣∣
ε=0

[
L

(
t, u(t) + εδu(t), aD

α
t (u + εδu)

) − L
(
t, u(t), aD

α
t u

)]
dt

=
∫ B

A

[
∂L

∂u
δu(t) +

∂L

∂aD
α
t u

aD
α
t δu(t)

]
dt, (13)

where δu is the Lagrangian variation of u, i.e. δu(a) = 0. Integration by parts formula (1)
gives that ∫ B

a

∂L

∂aD
α
t u

aD
α
t δu(t) dt =

∫ B

a

δu(t)tD
α
B

(
∂L

∂aD
α
t u

)
dt.

Thus we obtain∫ B

a

∂L

∂aD
α
t u

aD
α
t δu(t) dt =

∫ B

A

∂L

∂aD
α
t u

aD
α
t δu(t) dt +

∫ A

a

∂L

∂aD
α
t u

aD
α
t δu(t) dt

=
∫ B

A

δu(t)tD
α
B

(
∂L

∂aD
α
t u

)
dt +

∫ A

a

δu(t)tD
α
B

(
∂L

∂aD
α
t u

)
dt.

From the last equality we conclude that∫ B

A

∂L

∂aD
α
t u

aD
α
t δu(t) dt =

∫ B

A

δu(t)tD
α
B

(
∂L

∂aD
α
t u

)
dt +

∫ A

a

δu(t)tD
α
B

(
∂L

∂aD
α
t u

)
dt

−
∫ A

a

∂L

∂aD
α
t u

aD
α
t δu(t) dt

=
∫ B

A

δu(t)tD
α
B

(
∂L

∂aD
α
t u

)
dt

+
∫ A

a

[
tD

α
B

(
∂L

∂aD
α
t u

)
− tD

α
A

(
∂L

∂aD
α
t u

)]
δu(t) dt.

If we insert this into (13) we obtain

0 =
∫ B

A

[
∂L

∂u
+ tD

α
B

(
∂L

∂aD
α
t u

)]
δu(t) dt +

∫ A

a

[
tD

α
B

(
∂L

∂aD
α
t u

)
− tD

α
A

(
∂L

∂aD
α
t u

)]
δu(t) dt.

Therefore,

∂L

∂u
+ tD

α
B

∂L

∂aD
α
t u

= 0, t ∈ (A,B)

6
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and

tD
α
B

(
∂L

∂aD
α
t u

)
− tD

α
A

(
∂L

∂aD
α
t u

)
, t ∈ (a,A).

The claim now follows if we replace the right Riemann–Liouville by the right Caputo fractional
derivative according to (3) in the first equation. �

Remark 3.4. It is interesting to compare the Euler–Lagrange equations (10) and (11), (12) in
the case B = b, when A > a and A → a. Thus, if we let A → a in (11), (12) we obtain the
Euler–Lagrange equation (10) plus an additional condition

AI 1−α
B

(
∂L

∂aD
α
t u

)
≡ const.

Indeed, since

0 = tD
α
B(∂3L) − tD

α
A(∂3L) = − d

dt

1

�(1 − α)

∫ B

A

∂3L
(
θ, u(θ), aD

α
θ u

)
(θ − t)α

dθ, t ∈ (a,A),

we obtain that AI 1−α
B (∂3L) ≡ const.

Remark 3.5. Comparing fractional calculus used in [19–21] and here, one can note the
difference in approaches: in his work Jumarie used a modified Riemann–Liouville fractional
derivative that has different properties (see, e.g. [20, 21]).

Remark 3.6. The problem of formulating necessary and sufficient conditions which guarantee
that given fractional order differential equation is derivable from a variational principle is still
open (cf [34] for inverse problems with integer order derivatives). However, it is shown in
[9, 10] that a necessary condition for constructing a fractional Lagrangian from the given
Euler–Lagrange equation is that the Euler–Lagrange equation involves both left and right
Riemann–Liouville fractional derivatives. If only one of them appears then such an equation
cannot be the Euler–Lagrange equation for some Lagrangian. For example, according to
[9, 10] it is not possible to construct a fractional Lagrangian for a linear oscillator with
fractional derivative u′′ +u+ aD

α
t u = 0, and therefore the same holds for a nonlinear oscillator

of the type u′′ + f (u) + aD
α
t u = 0.

4. Approximation of Euler–Lagrange equations

In this section, we use the approximation of the Riemann–Liouville fractional derivative by
the finite sum where derivatives of integer order appear, and in this way we analyze a fractional
variational problem involving only classical derivatives. Then we examine relation between
the Euler–Lagrange equations obtained in the process of approximations and the fractional
Euler–Lagrange equations derived in the previous section.

We will assume in the following that L ∈ CN([a, b] × R × R), at least.
Let (c, d),−∞ < c < d < +∞, be an open interval in R which contains [a, b], such that

for each t ∈ [a, b] the closed ball L(t, b − a), with centre at t and radius b − a, lies in (c, d).
For any real analytic function f in (c, d) we can write the following expansion formula:

aD
α
t f =

∞∑
i=0

(
α

i

)
(t − a)i−α

�(i + 1 − α)
f (i)(t), t ∈ L(t, b − a) ⊂ (c, d), (14)

where
(
α

i

) = (−1)i−1α�(i−α)

�(1−α)�(i+1)
(cf [33, (15.4) and (1.48)]). Actually, condition L(t, b−a) ⊂ (c, d)

is not formulated in the literature; it comes from the Taylor expansion of f (t − τ) at t, for
τ ∈ (a, t) and t ∈ (a, b).

7
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Consider again the fractional variational problem (4). Assume that we are looking for
a minimizer u ∈ C2N([a, b]), for some N ∈ N. We replace in the Lagrangian the left
Riemann–Liouville fractional derivative aD

α
t u by the finite sum of integer-valued derivatives

as in (14):∫ B

A

L

(
t, u(t),

N∑
i=0

(
α

i

)
(t − a)i−α

�(i + 1 − α)
u(i)(t)

)
dt

=
∫ B

A

L̄(t, u(t), u(1)(t), u(2)(t), . . . , u(N)(t)) dt. (15)

Now the Lagrangian L̄ depends on t, u and all (classical) derivatives of u up to order N.
Moreover, ∂3L̄, . . . , ∂N+2L̄ ∈ CN−1([a, b] × R × R), since ∂iL̄ = ∂3L

(
α

i

)
(t−a)i−α

�(i+1−α)
, i =

3, ..., N + 2.
The Euler–Lagrange equation for (15) has the following form:

N∑
i=0

(
− d

dt

)i
∂L̄

∂u(i)
= 0.

This is equivalent to

∂L

∂u
+

N∑
i=0

(
− d

dt

)i (
∂3L ·

(
α

i

)
(t − a)i−α

�(i + 1 − α)

)
= 0. (16)

Remark 4.1. The Euler–Lagrange equation (16) provides a necessary condition when one
solves the variational problem (15) in the class C2N([a, b]), with the prescribed boundary
condition at A and B, i.e. u(A) = A0 and u(B) = B0, A0, B0 are fixed real numbers.

The question arises how (16) is related to (11), (12). More precisely, we want to show
that (16) converges to (11), (12), as N → ∞, in a weak sense.

We will simplify the proof by considering the case A = a and B = b. This choice reduce
(11), (12) to (10).

First we prove a result which provides an expression for the right Riemann–Liouville
fractional derivative in terms of the lower bound a, which figures in the left Riemann–Liouville
fractional derivative. Such an equality holds in a weak sense, if for a test function space we
use the space of real analytic functions as follows.

Let A((c, d)) be the space of real analytic functions in (c, d) with the family of seminorms

p[m,n](ϕ) := sup
t∈[m,n]

|ϕ(t)|, ϕ ∈ A((c, d)),

where [m, n] are subintervals of (c, d). Every function f ∈ C([a, b]), which we extend to be
zero in (c, d)\[a, b], defines an element of the dual A′((c, d)) via

ϕ �→ 〈f, ϕ〉 =
∫ b

a

f (t)ϕ(t) dt, ϕ ∈ A((c, d)).

As usual, we say that f and g from A′((c, d)) are equal in the weak sense if for every
ϕ ∈ A((c, d)),

〈f, ϕ〉 = 〈g, ϕ〉.
In the proposition and theorem which are to follow, we will assume (as in (14)) that
L(t, b − a) ⊂ (c, d), for all t ∈ [a, b].

Proposition 4.2. Let F ∈ C∞([a, b]), such that F (i)(b) = 0, for all i ∈ N0, and F ≡ 0 in
(c, d)\[a, b]. Let tD

α
b F be extended by zero in (c, d)\[a, b]. Then:

8
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(i) For every i ∈ N, the (i −1)th derivative of t �→ F(t)(t −a)i−α is continuous at t = a and
t = b and the ith derivative of this function, i ∈ N0, is integrable in (c, d) and supported
by [a, b].

(ii) The partial sums SN,N ∈ N0, where

t �→ SN(t) :=
⎧⎨
⎩

∑N
i=0

(
− d

dt

)i
(

F ·
(

α

i

)
(t − a)i−α

�(i + 1 − α)

)
, t ∈ [a, b],

0, t ∈ (c, d)\[a, b],

are integrable functions in (c, d) and supported by [a, b];
(iii)

tD
α
b F =

∞∑
i=0

(
− d

dt

)i (
F ·

(
α

i

)
(t − a)i−α

�(i + 1 − α)

)
(17)

in the weak sense.

Proof. One can simply prove the assertions (i) and (ii) concerning the mappings t �→
F(t)(t − a)i−α and t �→ SN(t), t ∈ [a, b].

So, let us prove the main assertion (iii). We have to show that

〈
tD

α
b F, ϕ

〉 =
〈 ∞∑

i=0

(
− d

dt

)i (
F ·

(
α

i

)
(t − a)i−α

�(i + 1 − α)

)
, ϕ

〉
, ∀ϕ ∈ A((c, d)).

Since tD
α
b F is continuous in [a, b], it follows:

〈
tD

α
b F, ϕ

〉 =
∫ b

a
tD

α
b Fϕ(t) dt

=
∫ b

a

F (t)aD
α
t ϕ dt,

where we have used fractional integration by parts (1). Now, by (14), (i) and (ii), we continue

〈
tD

α
b F, ϕ

〉 =
∫ b

a

F (t)

∞∑
i=0

(
α

i

)
(t − a)i−α

�(i + 1 − α)
ϕ(i)(t) dt

= lim
N→∞

〈
F(t),

N∑
i=0

(
α

i

)
(t − a)i−α

�(i + 1 − α)
ϕ(i)(t)

〉

= lim
N→∞

∫ b

a

N∑
i=0

(
− d

dt

)i (
F(t) ·

(
α

i

)
(t − a)i−α

�(i + 1 − α)

)
ϕ(t) dt.

This implies that

lim
N→∞

N∑
i=0

∫ b

a

(
− d

dt

)i (
F(t) ·

(
α

i

)
(t − a)i−α

�(i + 1 − α)

)

exists in A′((c, d)) and

lim
N→∞

∫ b

a

N∑
i=0

(
− d

dt

)i (
F(t) ·

(
α

i

)
(t − a)i−α

�(i + 1 − α)

)
ϕ(t) dt

=
〈 ∞∑

i=0

(
− d

dt

)i (
F ·

(
α

i

)
(· − a)i−α

�(i + 1 − α)

)
, ϕ

〉
.

This proves (17). �
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We will show in the theorem which is to follow, that the Euler–Lagrange equation (16)
converges to (10), as N → +∞, in the weak sense. To shorten the notation, we introduce PN

and P for the Euler–Lagrange equations in (16) and (10), respectively.
We will use the following assumptions:

(a) Let u ∈ C∞([a, b]) such that u(a) = a0, u(b) = b0, for fixed a0, b0 ∈ R, and
L3 (where L3 stands for ∂3L) be a function in [a, b] defined by t �→ L3(t) =
L3(t, u(t), aD

α
t u), t ∈ [a, b]. Let L

(i)
3 (b, b0, p) = 0, for all i ∈ N, meaning that for

(t, s, p) �→ L3(t, s, p), t ∈ [a, b], s, p ∈ R, the following holds:

(i)
∂iL3

∂t i
(b, b0, p) = 0, ∀p ∈ R;

(ii)
∂iL3

∂si
(b, b0, p) = 0, ∀p ∈ R;

(iii)
∂iL3

∂pi
(b, b0, p) = 0, ∀p ∈ R.

(b) Let u ∈ C∞([a, b]) such that u(i)(b) = 0, for all i ∈ N0, and u(a) = a0, for fixed a0 ∈ R.
Let L

(i)
3 (b) = L

(i)
3 (b, 0, aD

α
b u) = 0, for all i ∈ N and for every fixed u, meaning that for

(t, s, p) �→ L3(t, s, p), t ∈ [a, b], s, p ∈ R, the following holds:

(i)
∂iL3

∂t i
(b, 0, p) = 0, ∀p ∈ R;

(ii)
∂iL3

∂pi
(b, 0, p) = 0, ∀p ∈ R.

Now we will consider the fractional variational problem (4) in the case (a) and in the
case (b).

Theorem 4.3. Let L[u] be a fractional variational problem (4) which is being solved in the
case (a) or (b). Denote by P the fractional Euler–Lagrange equations (11), and by PN the
Euler–Lagrange equations (16), which correspond to the variational problem (15), in which
the left Riemann–Liouville fractional derivative is approximated according to (14) by the finite
sum. Then in both cases (a) and (b)

PN → P in the weak sense, as N → 0.

Proof. The proof of the theorem is based on proposition 4.2. By assumptions (a) and (b) and
the extensions of partial derivatives of L to be zero in (c, d)\[a, b] we can apply Proposition 4.2
with F(t) = ∂3L(t, u(t), aD

α
t u), t ∈ [a, b] (F ≡ 0 in (c, d)\[a, b]). For any ϕ ∈ A((c, d))

the following holds:

lim
N→+∞

〈
∂L

∂u
(t, u(t), aD

α
t u) +

N∑
i=0

(
− d

dt

)i (
∂3L(t, u(t), aD

α
t u) ·

(
α

i

)
(t − a)i−α

�(i + 1 − α)

)
, ϕ(t)

〉

=
〈
∂L

∂u
, ϕ

〉
+ lim

N→+∞

〈
∂3L,

∞∑
i=0

(
α

i

)
(· − a)i−α

�(i + 1 − α)
ϕ(i)

〉

=
〈
∂L

∂u
, ϕ

〉
+

〈
∂3L, aD

α
t ϕ

〉
=

〈
∂L

∂u
+ tD

α
b

∂L

∂aD
α
t u

, ϕ

〉
.

The claim now follows from (2). �
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5. Concluding remarks

Euler–Lagrange equations have been studied for a general fractional variational problem in
which the lower bound in the variational integral differs from the lower bound in the left
Riemann–Liouville fractional derivative which appears in the Lagrangian. Thus we allow for
the possibility that the beginning of the memory of the system (t = a) does not coincide
with the lower bound (t = A) in the Hamiltonian’s action integral. Also, the previous results
related to fractional Euler–Lagrange equations have been corrected and improved.

An approximation of fractional derivatives in the Lagrangian has been suggested, resulting
in a derivation of approximate Euler–Lagrange equations. Since the Leibnitz formula does
not hold for aD

α
t (f · g), the passage from the approximated to fractional Euler–Lagrange

equations is done by the use of weak limits over a specified test function space. In this way
right and left Riemann–Liouville fractional derivatives are related to each other in a weak
sense.

The further research will continue towards fractional variational symmetries and Nöther’s
theorem. In this context theorem 4.3 has an important role, since in a similar manner will
be approximated the corresponding infinitesimal criterion as well as Nöther’s theorem, which
leads to a further analysis of variational symmetries through fractional calculus.
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